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A new method for calculating eigenvalues of ordinary differential operators is 
presented. After imbedding the given operator into a suitable one-parameter family of 
operators, the eigenvalue problem is reformulated as an initial-value problem. A 
numerical scheme for solving the initial-value problem is described and results of several 
examples are displayed. Both the self-adjoint and non-self-adjoint cases are treated. 
It is advantageous to supplement the above method by an efficient iterative scheme, 
and an example of the latter is therefore shown. Finally, we briefly discuss the advantage 
and drawbacks of our method. 

I. INTRODUCTION 

Classical numerical methods for solving boundary-value problems, and, in 
particular, eigenvalue problems, are rather cumbersome [l, 21. On the other hand, 
computers are particularly suitable for solving large systems of (linear or nonlinear) 
first-order ordinary differential equations with given initial values. In this paper 
we shall describe a new method, by which the “simple” eigenvalue problem is 
reformulated as a “complicated” initial-value problem, which is, however, more 
adaptable to numerical solutions. In fact, this method is a special case of the 
continuation method [3], which has been applied by us also to the problem of 
finding roots of polynomials [4] and to boundary value problems [5]. 

The basic idea of the continuation method is rather simple: instead of the 
given problem one solves a similar but simpler (“base”) problem. Then this solution 
of the base is “continued” until the original problem is reached. The continuation 
method has been employed extensively over the last century in theoretical proofs 
of existence proofs of linear and nonlinear problems. A summary and some 
historical remarks can be found in the survey of Ficken [6], and the more recent 
works of Meyer [7] and Laasonen [8]. The merit of this method is that it naturally 
lends itself to the reformulation of problems as initial-value ones. 
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Davidenko [9] was apparently the first who implicitly applied the continuation 
method to the numerical evaluation of zeros of a system of equations; subsequent 
work can be found in Refs. [4, 10-121. A method which is very close to the con- 
tinuation method was invented by Bellman, Kalaba, and their coworkers. They 
called it “invariant imbedding” and applied it successfully to a wide variety of 
transport problems [ 13, 141 integral equations [ 15, 161 and others. Shoemaker [ 171, 
and more recently Scott et al [18], showed how the invariant imbedding method 
can be applied to the calculation of eigenvalues. In fact, the idea of transforming a 
boundary-value problem into an initial-value one goes back, at least, to Blasius’ 
classical solution of the boundary layer [19]. Extension of his approach by con- 
sidering different linear (and nonlinear) transformations of the dependent and 
independent variables was carried out by several investigators [2&22]. The con- 
tinuation method is capable of treating a much wider range of problems by trans- 
forming the operator itself. 

In the next section we formulate the continuation method for finding eigenvalues 
of self-adjoint ordinary differential operators. In Section III we treat the important 
special case of a Sturm-Liouville system, and in Section IV details of two numerical 
examples are given. In Section V, the method is extended to nonself-adjoint 
operators. In Section VI an iterative scheme is sketched, and finally in Section VII 
we make some concluding remarks. 

II. FORMULATION OF THE METHOD 

Consider the following eigenvalue problem [23] 

LlY, = hYl2 (2.1) 

where 

LI = f atk4 $$ , 
?L=O 

(2.2) 

where a:‘(x) are functions of class C” on the closed interval a < x < b and 
as’(x) # 0 on [a, b]. The eigenfunctions JJ~(X) should also satisfy the homo- 
geneous boundary conditions 

Uf’y, 3 2 [bj, s (a) + cjk s(b)] =O, j=l,2 ,..., N, (2.3) 
k=l 

where the bil, and cjl, are constants. Let us also assume that the problem (2.1-2.3) 
is self-adjoint. It is known [23] that the eigenvalues h, are real and constitute an at 
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most enumerable set with no finite cluster point; in addition, it will be assumed 
that they are distinct. In what follows we shall show how to compute these eigen- 
values and the corresponding eigenfunctions by the continuation method. 

Let us imbed L, into a one-parameter family of operators L(t) as follows 

LO) Y(f, 4 = x(t) Y(C 4, (2.4) 

where we have emphasized the r-dependence of the family L which is defined by 

L(t) = f a,(t, x) &. 
Tt=O 

The functions a& x) have continuous t derivatives, and for t E [0, I] have the 
properties defined after Eq. (2.2). The eigenfunctions ~(1, x) should satisfy the 
boundary conditions 

u(j)(t) Y G 5 [bj, g (t, a) + Cjk gg (t, b)) = 0, j-l,2 ,**., N, (2.6) 
k=l 

In addition to the above requirements, the functions a,(t, x) are chosen so that 

(i) At t = 0, the eigenvalue problem 

L(O) Ye4 4 = 40) Y(O, 4, 

U(j)(O) y = 0, 
(2.7) 

can somehow be solved. The corresponding eigenvalues 

A, = h(O) (2.8) 

will be referred to as the base. 
(ii) At t = 1, 

a,(l) x) = a:‘(x). (2.9) 
See Eq. (2.2). 

(iii) For 0 < t < 1 the probIem (2.4-2.6) is self-adjoint with distinct 
eigenvalues. 

In order to formulate an initial-value problem for the eigenvalues h(t) we 
differentiate Eq. (2.4) with respect to t and get 

LY + L-jt I: ;\u + hj, (2.10) 
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where dots denote t-derivatives so that 

(2.11) 

Differentiating Eq. (2.6) with respect to t, we obtain 

V)(t) j = 0. 

Next, we take the inner product of Eq. (2.10) with y, 

<b, Y> + w, v> = Jvu, v> + WY v>, 

(2.12) 

(2.13) 

where the inner product of two functionsf(t, x) and g(t, X) is defined by 

(f, g> = w&t> = j$ 0 84 0 45 (2.14) 

where the bar denotes the complex conjugate. Since L is self-adjoint and j satisfies 
the boundary condition (2.12), the second term on the left of Eq. (2.13) can be 
written as 

(LA Y> = (9, Lv) = (34 b> = m Y>, (2.15) 

where in the Iast equality we have used the property that the eigenvalues of self- 
adjoint operators are real. Hence this term cancels out the last term on the right- 
hand side of Eq. (2.13), and we obtain 

Jp)(t) = (&p, yi’)/(y’, p), i = 1, 2,..., (2.16) 

where the superscript i orders the eigenvalues and the corresponding eigenfunc- 
tions. 

Equations (2.16) represent a system of uncoupled, first-order, nonlinear ordinary 
differential equations. The initial values of this system are given by 

Aci’(0) = At’, i = 1, 2 ,..., (2.17) 

where @) is our base, Eq. (2.8). If we could integrate Eqs. (2.16, 2.17) from t = 0 
until t = 1 we would get 

ACi’(l) = hf’, i = 1, 2 ,..., (2.18) 

which, because of our choice of (2.9) is the solution of our original problem, 
Eqs. (2.1-2.3). 
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The numerical integration of Eqs. (2.16, 2.17) is carried out in two interwoven 
stages, which are arranged as nested loops [24] in the computer program. In the 
first stage, or the inner loop, we evaluate the right hand side of Eq. (2.16) assuming 
that t and Ati) are known from the outer loop. This is done by solving 
the following initial-value problem [23] 

L(t) +j = A’%& ) j = 1, 2 ,..., N, 

[a~-l~j(u)]/ax~-l 
(2.19) 

= I$, , j, k = 1, 2 ,..., N, 

where for simplicity ~#j~)(t, Aci), X) is written as &(x). The corresponding eigen- 
function 

YCi’ = j %A 2 (2.20) 

is found by solving the linear (inhomogeneous) system of N - I equations 

5 aJJ’“‘(t) r#+ = 0, k = 1, 2 ,..., N - 1, 
j=l 

(2.21) 

for the constants CQ , [see Eq. (2.6)]. Since the eigenvalues were assumed to be 
distinct, the rank of the matrix of (2.21) is N - 1 [23] and therefore the solutions 
OIj ,j = 1, 2 )...) N, are determined up to an arbitrary multiplicative factor. The 
last equation corresponding to k = N serves as a compatibility equation. If we 
insert the constants cllj into it we get 

(2.22) 

where the small Ed is a measure of the error introduced by the truncation and 
round-off errors. Knowing yti) we can evaluate the right-hand side of Eq. (2.16). 

We are now ready for the second stage, which is the outer loop in the numerical 
program. In the previous stage we have computed G(t, Afi)) where 

dh’i’/dt = G(t, A(i)) (2.23) 

[see Eq. (2.16)]. The numerical integration of the last equation with initial values 
(2.17) produces the desired eigenvalues A, at t = 1 [see Eq. (2.18)]. It is a nice 
feature of this method that one can pick out any specific eigenvalue, say the 17th, 
and determine it independently of the others. Further details about this scheme 
will accompany the example which is described in the next section. 

In order to insure the existence and uniqueness of the solution Act)(t) of 
Eqs. (2.23, 2.17), the function G(t, Aci)) should be continuous in t and satisfy a 
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Lipschitz condition in hti) in a domain containing the trajectory Ati’( These 
conditions are met in our case: G is continuous in t since the functions a,(& x) were 
required to possess continuous t-derivatives, see Eqs. (2.16) and (2.11). To show 
that G satisfies a Lipschitz condition with respect to hti) we have to use the theorem 
[25] on the continuous dependence of the solution & of Eqs. (2.19) on the param- 
eter hti), and the continuous dependence of the coefficients 01~ on Xci) in Eq. (2.21). 
Hence the integration of Eqs. (2.16, 2.17) from t = 0 to t = 1 is equivalent to 
solving the original problem (2.1-2.3). 

111. STURM-LIOUVILLE PROBLEM 

As an example of the application of the method described in the previous section, 
let us consider here the Sturm-Liouville eigenvalue problem 

-hY, = -M-4 YI’W)’ + 41(x) Yd-4 = 4rd-4 .J44 (3.1) 

where primes denote differentiation with respect to X. Here p&) > 0, ri(x) > 0 
and q,(x) 3 0, while pi’(x) and rl(x) are continuous on [0, 11. The eigenfunctions 
vi(x) satisfy the homogeneous boundary conditions 

him - bYI’ = 0, (3.2a) 

and 

w,(l) + c7J,‘(l) = 0, (3.2b) 

where the b’s and c’s are nonnegative constants, and at least one of each pair does 
not vanish. It is known that Eqs. (3.1, 3.2) determine an infinite sequence of 
nonnegative distinct eigenvalues, and in what follows we shall show how to find 
them by the continuation method described in Section II. 

Corresponding to Eqs. (2.4-2.6) we have here the imbedding 

L(t) y(t, -4 = -(PO, -9 $1 + dt, 4 Y = W) r(t, 4 Y, (3.3) 

with boundary conditions 

b,vk 0) - b,y’(t, 0) = 0, (3.4a) 

c,y(t, 1) + w’(t, 1) = 0, (3.4b) 

for t E [0, 11. Because of the factor r(t, x) on the right hand side of Eq. (3.3), the 
differential Eq. (2.16) has here a slightly different form, i.e., 

@J(t) = ((L - X(i))) yw, ,c”‘)/(rv(i), y(i)), i = 1, 2,... . (3.5) 
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An obvious choice for the functions p, q and Y which satisfy conditions (i-iii) of 
Section II is 

At, x) = 1 - t + PI(X) t, 
q(t7 x> = q,(x) t> 
r(t, x) = 1 - t + T1(X) t. 

With this choice, Eq. (3.3) becomes at t = 0 

Y6 + XOYO = 0, 

(3.6) 

(3.7) 

where y0 = ~(0, x). For given b’s and c’s it is a simple matter to find the eigen- 
values and eigenfunctions of this equation which satisfy boundary conditions (3.4) 
at t = 0. For example, if 

b, = cz = 0, (3.8) 

we get our base 

,~) = h’i’(O) = i2~2 9 i = 1, 2,..., (3.9) 

and the corresponding eigenfunctions 

$ = sin(irx), i = 1, 2,... . (3.10) 

The solution of Eqs. (3.1, 3.2) is found by integrating Eqs. (3.5, 3.9) from t = 0 
until t = 1. 

In order to evaluate the right hand side of Eq. (3.5) it is convenient to define the 
two-variable function, see Eq. (2.14), 

(3.11) 

so that the inner product of the two real functions f and g is 

and 
w(t, 1) = WlO) = CL g), (3.12) 

WY& 4 = fk 4 ‘dt, 4, (3.13) 

where the prime denotes partial differentiation with respect to x. Similarly, we 
define 

u’(t, x) = y(i - At) y, (3.14) 
and 

d(t, x) = ry2, (3.15) 
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so that Eq. (5) can be written as 

x = 44 1) 
v(t,* (3.16) 

The numerical solution is executed as a nested loop. In the inner loop t and h(t) 
are known (from the outer loop) and we wish to compute the right hand side of 
Eq. (3.16). In order to do this the second-order differential Eq. (3.3) is written as a 
pair of first-order differential equations 

y’ = z, (3.17) 
2‘ Z yn = p-l(--p’z + qy - by). (3.18) 

The other two equations are furnished by Eqs. (3.14, 3.15). Substituting Eqs. (3.3) 
and (3.6) into Eqs. (3.14, 3.15) we get after a few manipulations 

24’ = (1 - pJ z’y - p1’zy + q1 y2 - A(r, - 1) y2, (3.19) 

where z’ is given by Eq. (3.18), and 

u’ = ry2. (3.20) 

The initial values of Eqs. (3.17-3.20), for the special case with Eq. (3.8), are 

and 

Y(4 0) = 0, (3.21) 
z(t, 0) = I, (3.22) 
u(t, 0) = 0, (3.23) 

o(t, 0) = 0. (3.24) 

Condition (3.22) is arbitrary, since the eigenfunctions are determined only up to an 
arbitrary multiplicative factor. 

The initial-value problem (3.17-3.24) is in the standard form suitable for 
numerical integration by available programs, e.g., Runge-Kutta method. The 
integration is carried out until x = 1, and there we compute 

G(t, h) = u(t, l)/v(t, 1). (3.25) 

We are now ready for the second stage which is the outer loop in the computer 
program. Comparing Eqs. (3.16) and (3.25) we see that 

ii(“)(t) = G(t, P), i = 1, 2,..., (3.26) 
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where we have emphasized that this is a system of identical uncoupled equations 
but with different initial values. Equations (3.26, 3.9) are again an initial-value 
problem and can be easily integrated numerically. The t-integration is carried out 
until t = 1, and the final values 

jp = ,(i)(l) (3.27) 

are the solution of the original problem (3.1), since from Eqs. (3.6) we see that 

L(1) = L, . (3.28) 

Similarly, the eigenfunctions of Eq. (3.1) are given by 

This solves our problem. 

yi”‘(x) = y’i’(l x) 3 f (3.29) 

The proof for the existence and uniqueness of the solution of Eqs. (3.26, 3.9) was 
sketched in the previous section. In particular, we note that for t E [0, I] L is a 
Sturm-Liouville operator whose eigenvalues are distinct, so that the trajectories 
hfi)t do not cross and the derivatives i(i)(t) are well defined. In contrast to the 
initial-value problems (3.17-3.24; 3.26,3.9), the original problem is not continuous 
in h 1 : if A, is only infinitesimally different from an eigenvalue, the only solution 
of Eqs. (3.1, 3.2) is the trivial one y1 = 0. In our solution the condition (3.4b) is not 
strictly satisfied [see also Eq. (2.22)], and in the special case (3.8) the difference of 
y(t, 1) from zero is a measure of the error introduced by the numerical computa- 
tions. 

It should be stressed that it is essential for our method that the numerical 
integration of the outer loop (3.26,3.9) is performed discretely and not continuously 
as is done, for example, by analog computers. Hence the interval 0 ,< t < 1 is 
divided into ajinite number of steps 0 < t, < t, < es* < tj < +.* < 1, and at each 
step the function G(tj , X(i)(tj)) is evaluated by integrating the inner loop (3.17-3.24). 
This latter integration can be done in principle also by an analog computer. See 
also Section VII. 

IV. NUMERICAL EXAMPLES 

The continuation method as formulated in the previous sections is not restricted 
to regular equations. It was applied, for example, to finding the eigenvalues and 
eigenfunctions of the (singular) Bessel equation 

-h’>’ = 4w , (4-l) 
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with the boundary conditions 

Y,‘(O) = 0 and ~~(1) = 0. 

The singularity at x = 0 is easily removed by L’Hospital rule. 

(4.2) 

A program was written to solve this problem on a GE-635 computer using an 
available integrating subroutine [26]. The errors in the computations are controlled 
by a convergence criterion, the standard error 6, which is built in the integrating 
subroutine. (The standard error is defined as / u/y,,,, i , where u is the difference 
between two successive approximations, and y,,,, is the largest absolute value 
attained so far in the integration). The first five eigenvalues and eigenfunctions 
were computed, with standard errors for the x and t integrations of 6, = at = .Ol. 
Four eigenvalues were correct to five significant digits, whereas the eigenvalue 
corresponding to i = 3 was correct to only three significant digits. The computa- 
tions took relatively long time-two minutes. In Fig. 1 we show the trajectories 
[h(i)(t)]1/2 for 0 < t < 1 for these five eigenvalues. In Figs. 2 and 3 we show the 
t-development of the first and third eigenfunctions yci)(t, x) for t = 0, .2, .5, .8, 
and 1. 

One of the advantages of the present method is its flexibility. The program which 
was written can handle the general Sturm-Liouville problem, Eqs. (3.1, 3.2); all 
that one has to do in order to solve a specific problem is to specify the functions 
p1 , q1 and rl , the constants 6, , 6, , c1 and c2 , and the standard errors 6, and 6,. 

JgT 
I I 

15 - 

i=5 

/ 

10 - 
i=4 

i=3 

5 - 
i=z 
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m 

0 I I t 
0 0.25 0.50 0.75 1.0 

FIG. 1. Trajectories of the first five eigenvalues of the Bessel Eq. (4.1, 4.2). 
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FIG. 2. Development of the first eigenfunction of the Bessel equation. 
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X 
0 0.25 0.50 0.75 1.0 

FIG. 3. Development of the third eigenfunction of the Bessel equation. 
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As a second example, we solved the following eigenvalue problem which arises in 
heat transfer theory 1271 

-(xy1’)’ = 4&x(1 - x”) y1 ) (4.3) 

with boundary conditions 

J%‘(O) = 0, VI’(l) = 0. (4.4) 

This was done by changing only two (!) cards in the program which solved the 
previous problem, Eqs. (4.1, 4.2). The first ten eigenvalues and eigenfunctions 
were computed with standard errors 8, = 6, = .OOl . Again all eigenvalues except 
for the third were correct to at least five significant digits. The computations took 
six minutes on the GE-635. In Fig. 4 we show the trajectories (Xci)(t))1/2 for 
0 < t < 1 for the first five eigenvalues. Ways to reduce the computation time are 
discussed in Section VI. 

0-t 
0 0.25 0.50 0.75 10 

FIG. 4. Trajectories of the first five eigenvalues of Eqs. (4.3, 4.4). 

V. NONSELF-ADJOINT PROBLEMS 

We turn again to the eigenvalue problem (2.1-2.3) except that now we do not 
assume that it is self-adjoint. We proceed as before and imbed this problem accord- 
ing to Eqs. (2.4-2.6). The functions a,(t, x) should satisfy requirements (i) and (ii), 
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[Eqs. (2.7-2.9)] but not requirement (iii). In order to solve this problem by the 
continuation method it is necessary to consider also the adjoint problem [28] 

L+(t) z(t, 4 = p(t) 46 $9 (5.1) 

where L+ is the adjoint of L and is given by 

L+(t) = (- l)N (aN/ihN) aj,? + (-l)N-l (8N-1/hN-1) 5N-e, + *-’ + a,, , (5.2) 

where bars denote complex conjugates. The adjoint boundary conditions 

u+(j)(t) z(t, x) = 0, j = 1, 2 ,..., N, (5.3) 

are determined so that for t E [0, I] 

WY, 4 = (v, L+z), (5.4) 

where the inner product was defined in Eq. (2.14). 
If all the poles of the Green’s function of the problem (2.4-2.6) for t E [O.l] are 

simple, then the eigenfunctions of this problem yti) and those of the adjoint 
problem (5.1-5.3) z(j) satisfy a biorthogonal relation [28] 

(y(i), z(j)) E & . (5.5) 

If yti) has an eigenvalue h u), then the corresponding eigenfunction zti) has an 
eigenvalue Ati), i.e., 

p(i)(t) = P)(t). (5.6) 

In order to derive the initial-value problem for h(t), we differentiate Eqs. (2.4,2.6) 
with respect to t as before and obtain Eqs. (2.10-2.12). Here we diverge from the 
previous development. We take the inner product of Eq. (2.10) with z and get 

ch z> + (U, 2) = QY, 4 + 4% 4. (5.7) 

The second terms on the left hand side of Eq. (5.7) can be written as 

w, 4 = (9, L+z) = (9,l-d = P(A z). (5.8) 

Noting Eq. (5.6) we see that for corresponding eigenfunctions this term cancels out 
the last term on the right hand side of Eq. (5.7) and we obtain 

&i’(t) = @y(i), ,ciy(y’i’, z(i)), i = 1, 2,... . (5.9) 

If we could integrate Eqs. (5.9) with initial values (2.17) from t = 0 until t = 1, we 
would get 

lp’(l) = A$‘, i = 1, 2,..., (5.10) 

which because of our choice of (2.9) is the solution of our original problem 
[Eqs. (2.1-2.3)]. 
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In order to demonstrate our method let us consider the simple nonself-adjoint 
problem 

LYl = - (-g + al& + h) Yl = kYl, (5.11) 

where a, # 0 and b, are given real constants, and where the eigenfunctions satisfy 
the boundary conditions 

yl’(0) = y,‘(l) = 0. 

An appropriate imbedding is 

with boundary conditions 

y’(t, 0) = y’(t, 1) = 0. 

It is easy to show that the adjoint problem is 

with boundary conditions 

a,tz(t, 0) - z’(t, 0) = 0, 

a,tz(t, 1) - z’(t, 1) = 0. 

The base, i.e., the solution of Eqs. (5.13, 5.14) at t = 0 is 

(5.12) 

w> u(t, -4, (5.13) 

(5.14) 

PO) dt, 4 (5.15) 

(5.16a) 

(5.16b) 

A;) = p(o) = (j@, i = 1, 2,..., (5.17) 

and the corresponding eigenfunctions 

y;‘(x) = yyo, x) = cos(inx), i = 1, 2,... . (5.18) 

In order to formulate the initial-value problem for this example, we substitute 
Eq. (5.13) into (5.9) and get 

&‘i’ 
-=- 

dt 
si (a#)’ + b,P) zci) dx = 0:; ;,’ , 

J; y’i’z’i’ & i= 1,2 )...) (5.19) 
3 
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where 
u’(t, x) = -(a, y’ + b1y) 2, (5.20) 
u’(t, x) = yz, (5.21) 

and for conciseness we have deleted the superscript i. The numerical procedure 
proceeds as in the self-adjoint case. In the inner loop, t and X are assumed to be 
known from the outer loop, and we evaluate the right hand side of Eq. (5.19) by 
solving the following initial-value problem (in addition to Eqs. (5.20, 5.21)): 

Y’ = P, 
p’ = y” = -a,tp - b,ty - Ay, 
z’ = q, 
q’ = z” = a,tq - b,tz - Az. 

The initial values for Eqs. (5.20-5.25) are 

(5.22) 
(5.23) 
(5.24) 
(5.25) 

Ye, 0) = 1, (5.26) 
p(t, 0) = 0, (5.27) 
z(t, 0) = 1, (5.28) 
q(t, 0) = a14 (5.29) 
u(t, 0) = 0, (5.30) 
u(t, 0) = 0. (5.31) 

Conditions (5.26) and (5.28) are arbitrary, since the eigenfunctions are determined 
only up to an arbitrary factor, Note that since Eq. (5.14) is independent of t, j also 
satisfies this equation as was required for the derivation of Eq. (5.19) [see also 
Eq. (2.12)]. On the other hand, condition (5.16) explicitly depends on t and therefore 
t does not (and does not have to) satisfy this equation. 

The system (5.20-5.31) is integrated numerically until x = 1, and there we 
compute 

G(t, A) = u(t, 1)/u@, 1). (5.32) 

The outer loop consists of the integration of Eq. (5.19) with initial values given 
by Eq. (5.17). The final values of the integration 

j+‘(l) = jp (5.33) 

are the solution of the original problem (5.11, 5.12) since L(1) = 4 . 
A program was written to solve this problem on the GE-635 using an available 

integrating subroutine [26]. As a numerical example, we chose a, = 4 b, = -5. 
In Fig. 5 we show the trajectories (A(i)(t))l/z for 0 < t < 1 and i = l-5, (because 
of an oversight, the case i = 0 was not computed), In Fig. 6 we show the develop- 
ment of yfa)(t, X) for t = 0, .25, .5, .75, and 1. 
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FIG. 5. Trajectories of the eigenvalues i = l-5 of the nonself-adjoint Eqs. (5.11, 5.12) with 
a, = 4 and 6, = -5. 

-10 X 
0 0.25 0.50 0.75 1.0 

FIG. 6. Development of the second eigenfunction of the nonself-adjoint problem. 
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VI. AN ITERATIVE SCHEME 

The main drawback of the continuation method presented above is that it is 
rather slow. The reason for this is clear; in effect, one has to solve accurately many 
intermediate problems for 0 -C t < 1, whose solution is usually not of interest, in 
order to reach the solution of the original problem at t = 1. Therefore if one seeks 
highly accurate values for the eigenvalues, it is worth while to proceed as follows. 
First compute with the continuation method a rather crude result by choosing a 
large integration step size. Then use this result as a starting approximation in some 
efficient iterative method. If this starting value is in the “domain of attraction” [29] 
of the desired solution, then the iterative scheme will converge. 

There exist many iterative schemes for eigenvalue problems. A simple and effi- 
cient method a la Regula Falsi is presented in [27]. Here we shall sketch a scheme 
which is a variant of the Rayleigh-Ritz method and which is easily incorporated 
in the program described in the previous sections. Taking the inner product of 
Eq. (2.1) with y1 we obtain 

hf’ zzzz (L y 
1 f’, (i) y 1 )/(y’“’ y(i)) 

19 13 

where L, is not necessarily self-adjoint. 
Let us expand y, and X, as follows: 

Y&d = q”‘(x) + q’(x) + -** , (6.2) 
x1 = u(o) + o(1) + . . . , (6.3) 

where II $1)(~)(j < [I $“)(~)ll and I a(l) j Q 1 u(O) 1 . Substituting the last equations 
in Eq. (6.1) we obtain after several manipulations the following expression for the 
first-order correction to the eigenvalue 

o(1) = ($O', .$O')-1 [(&p, $0') - ,coyp, r)(o')]* (6.4) 

Expansions like (6.2, 6.3) and results similar to Eq. (6.4) were already created by 
Rayleigh and Schrodinger and were rigorously studied by Rellich [30]. In our 
scheme we take, as initial approximation, 

7)‘“‘(x) = YU, 4, (6.5) 
and 

CT(O) = A(l), (6.6) 

where the right hand sides of these equations are obtained from the computations 
of the continuation method, which because of truncation and round-off errors do 
not yield the exact solutions of Eqs. (2.1-2.3). 
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For simplicity, let us restrict ourselves from now on to the Sturm-Liouville 
problem (3.1, 3.2). A simple chaise for 7(l) is 

q(l)(x) = kx2, (6.7) 

where the coefficient k is determined so that rl to) + $l) satisfy boundary conditions 
(3.2). From Eqs. (3.21,3.22) we see that $0) was computed to satisfy the condition 
at x = 0, and clearly 7) (l) also satisfies Eq. (3.2a). Inserting q(O) + +I) defined by 
Eqs. (6.5) and (6.7) into condition (3.2b), we obtain 

k = -h.+“‘(l> + c27j(“)‘(1>1/(c1 + 2~21, W9 

where the numerator is known from previous calculations. Inserting Eq. (6.7) into 
(6.4) we get for the correction for the eigenvalue 

where 

o(l) = kD, (6.9) 

D = (q(O), q’O’)-l [&x2, q(O)) - d”)(x2, $O’)]. (6.10) 

Let us define the iteration function 

&+I) = h + k(nD, j = 1, 2,..., (6.11) 

where j counts the iterations. For economy sake, D is not recomputed for every 
iteration. The initial approximation, as was mentioned before, is 

41) = &1X (6.12) 

and the kG)‘s are computed by an equation similar to Eq. (6.8), where the values of 
the eigenfunction and its derivative at x = 1 are computed by integrating 
Eqs. (3.17, 3.18, 3.21, 3.22) with h replaced by ho) and t = 1. If the initial approxi- 
mation (6.12) is sufficiently close to its corresponding eigenvalue, i.e., if h(l)(l) is in 
the domain of attraction of Xr’, then the iterations will converge. 

In order to demonstrate the scheme, we return to the example of the Bessel 
equation, Eqs. (4.1, 4.2). Since in this case c2 = 0, it follows from Eq. (6.8) that 

ku, = --Yw(~>, (6.13) 

where y(,) is the j-th iterate of the eigenfunction. Also, inserting Eq. (4.1) into (6. IO), 
we obtain 

D = - ,: (4x + 4,)x3) m(x) dx/( x&, & (6.14) 
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A program was written to perform the iterations defined by Eq. (6.11) in double 
precision arithmetic, and the results for the first four eigenvalues are summarized 
in Table I. The error is measured by the deviation of ~$1) from zero, and we see 
from the (rounded) results that the convergence is approximately quadratic. 

TABLE I 

1 A${ log loY~:;(l) “8; 1% mY{a,;(l) 

1 5.7830667 -5 30.467446 -3 
2 5.783187560644944 -7 30.49007822449753 -3 
3 5.783185962947008 -14 30.47126815070438 -7 
4 5.783185962946785 -18 30.47126234365985 -13 
5 5.783185962946785 -19 30.47126234366208 -18 

1 74.769913 -3 138.52465 -2 
2 74.88038481770986 -4 137.8671634518661 -2 
3 74.88700694357212 -9 139.0444959928239 -5 
4 74.88700679069840 -13 139.0402854828901 -8 
5 74.88700679069517 -18 139.0402844267089 -12 

VII. DISCUSSION 

In the present paper we showed how one can solve the eigenvalue problem 
(2.1-2.3), by first imbedding it in the family (2.42.6), and then reformulating it as 
a seemingly very complicated (but computationally rather simple) initial-value 
problem. For the self-adjoint case, Eqs. (2.16-2.17) represent a system of first- 
order, nonlinear, uncoupled ordinary differential equations with given initial 
values. It was demonstrated how this problem can be solved numerically on a 
digital computer. The numerical program consists of nested loops, and we take 
advantage of the fact that the t-integration in the outer loop is performed discretely. 
We are now trying to solve this problem on our analog computer by integrating 
Eqs. (3.17-3.24) by a fast integrator and Eqs. (3.26, 3.9) by a slow one. 

In many classical methods [ 1,2], instead of finding the eigenvalues of differential 
equations one seeks the eigenvalues of a matrix which approximate the original 
problem. These methods become more time-consuming and less accurate for high 
eigenvalues (i.e., large i in Eq. (2.16)). In “shooting” methods [2], on the other 
hand, one guesses an eigenvalue and then integrates an initial-value problem 
satisfying one set of boundary conditions [e.g., Eqs. (3.2a)l. The eigenvalues are 
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then adjusted in order to satisfy the boundary conditions on the other side (i.e., 
Eq. (2.2b)). A more sophisticated “shooting” variant was developed by Bailey [31] 
and Godart [32] who used the Priifer substitution which transforms the Sturm- 
Liouville problem into a Ricatti equation, This approach was extended and 
generalized by Scott et al. [18], whose method is particularly suitable for evaluating 
characteristic lengths. After the completion of the present work, Professor Kalaba 
let me know that he had derived [33] an equation similar to Eq. (2.16) in order to 
study the changes of the eigenvalues of a matrix due to changes in its elements, (see 
also [34]). One should note, however, that eigenvalues of a matrix, unlike those of 
differential equations treated by us, cannot be determined independently, which is 
a severe drawback. 

There are two possible drawbacks to the continuation method. The first is that 
the solution of some problems may be rather slow. The reason is clear: in effect one 
has to solve accurately many itermediate problems for 0 < t < 1, whose solution 
is usually not of interest, in order to reach the solution of the original problem at 
t = 1. Therefore, it is usually economical to combine this method with efficient 
iterative schemes, as was done in this work and in [3,4]. In fact, one does not have 
to wait until t = 1 in order to iterate, but can do so also at intermediate t’s [35]. 
The second difficulty is the possibility of exponential growth of unwanted solutions 
(“ill-conditioned problems”). This can sometimes be overcome by prescribing 
greater accuracy in the computations, or more economically, by using a suitable 
variant, for example, parallel shooting [2]. On the other hand, the main advantages 
of the present method are that it is suitable for computers, it is non-iterative, and 
that the eigenvalues are determined independently-a useful property for the next 
generation parallel computers. 
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